
FABIANO AIZAWA VALENÇA DE MELLO

KEYPOINT DETECTION ON MULTI-DIAL METERS FOR AUTOMATIC METER

READING USING YOLOV7

(pre-defense version, compiled at March 6, 2023)

Documento criado para entrega do Trabalho de Conclusão
de Curso 2 em Inteligência Artificial.

Área de concentração: Ciência da Computação.

Orientador: David Menotti.

CURITIBA PR

2023



RESUMO

A leitura Automática de Medidores (AMR em inglês) é a solução menos custosa e mais rápida
para a tarefa arduosa da leitura de medidores residênciais e industriais antigos, quando comparada
com a substituição desses medidores pelos novos smartmeters. Apesar de vários métodos e
pesquisa feitas na área, encontramos poucos trabalhos anteriores que abordaram o problema de
AMR para medidores residenciais com múltiplos ponteiros. Neste trabalho, focamos neste tipo
de medidores, destacando as diferenças entre medidores com um único ponteiro e propomos
uma abordagem que, até onde sabemos, nunca foi implementada para medidores com múltiplos
ponteiros. Nossas principais contribuições são: (a) mostramos que detecção de keypoints em
medidores com múltiploos ponteiros usando um detector de objetos (YOLOv7) é uma abordagem
viável, e (b) expandimos o, que para o melhor do nosso conhecimento, é o único dataset público
de medidores com múltiplos ponteiros, a UFPR-ADMR, com anotações para possibilitar detecção
de keypoints. Nosso método atingiu uma taxa de detecção geral de 99.15% para todos os dígitos
e keypoints.



ABSTRACT

Image-based Automatic Meter Reading (AMR) is the less costly and faster solution to the
laborious task of reading old residential and industrial meters, when compared to replacing
outdated models with smart meters. Even with many methods and research done in this area, we
found few previous works that tackled the AMR problem for residential multi-dial meters. In this
work we focused on these type of meters, highlighting the differences with single-pointer meters
(gauges) and propose an approach that to the best of our knowledge was never implemented for
multi-dial meters. Our main contributions are: (a) we show that detecting keypoints on multi-dial
meters using an object detector (YOLOv7) is a viable approach, and (b) we expand upon the, as
far as we know, only public real-world multi-dial meter dataset, the UFPR-ADMR dataset, with
annotations for enabling keypoint detection. Our method achieved an overall 99.15% detection
rate for all digits and keypoints.
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1 INTRODUCTION

Measuring and billing of residential utilities (energy, water, and gas), especially in developing
countries, is a laborious task, because old mechanical meters are still prevalent, requiring an
employee of the utility company to visit each residence to perform the readings (Bishwokarma
et al., 2020; Salomon et al., 2020; Laroca et al., 2019). Automatic meter reading (AMR) is the
task of automatically measuring the values of a meter. While smart meters can perform this
task, replacing the old meters would have a great monetary and environmental cost (Howells
et al., 2021; Salomon et al., 2020). Because of that, many image-based methods for AMR were
proposed, as their implementation would not require the replacement of the meters. Figure 1.1(a)
shows examples of residential digit meters from the UFPR-AMR dataset (Laroca et al., 2019) and
Figure 1.1(b) residential pointer meters from the UFPR-ADMR dataset (Salomon et al., 2020).

(a) residential digit meters

(b) residential pointer meters

Figure 1.1: Examples of residential meters.

Traditional methods, often those also used in similar tasks (e.g., text detection, circle
fitting), have been applied in AMR methods, however they have issues in unconstrained scenarios
(Calefati et al., 2019; Salomon et al., 2020), because images captured in real field scenarios may
present challenging environmental factors (such as the ones in Fig. ??) and other variations (e.g.,
shooting angle, different models, etc.). In contrast, Deep learning-based methods have great
generalization capabilities, and Convolutional Neural Networks (CNNs) in particular are well
suited for detection and classification problems, being widely used in recently developed AMR
methods.



10

(a) uneven lighting (b) blur (c) distant capture (d) reflections

(e) dirt (f) glare (g) broken glass

Figure 1.2: Images from Salomon et al. (2020) showing samples of challenging scenarios present in the UFPR-ADMR
dataset.

In the AMR literature there is a notable lack of publicly available datasets (Salomon et al.,
2020), with most works using private datasets, either self-gathered or provided by companies.
Additionally, most AMR methods dealing with residential meters focus on digit meters, and for
pointer meters, almost all are designed for industrial single-dial meters (also known as gauges).
Deep-learning based methods for residential pointer meters with multiple dials (multi-dial meters)
were only found in Salomon et al. (2020) and its related works, which also presents the only
publicly available dataset we found for this type of meter (UFPR-ADMR). It was based on this
dataset that we built the dataset used in our experiments.

While digit meters present topological similarities regardless of model (most notably
having a counter area, where the digits to be read are located 1.1(a)), there are significant
differences between gauges and multi-dial meters that might pose challenges when attempting to
apply methods successful for gauges on multi-dial meters. Other than the evident difference in
number of dials, in gauges the pointer is used to read a value in a scale, and in multi-dial meters,
each dial represents one digit of the reading, which means misreading a single dial might cause
a significant error in the measurement, especially in the most significant dials (Salomon et al.,
2020).

To the best of our knowledge, popular deep learning-based methods for angle calculation
in AMR of pointer meters, such as keypoint1 detection and feature extraction, were never
implemented for multi-dial meters. Object detection models, such as the YOLO family, are
most often used in this field as a first step to detect the RoI. They were used before for keypoint

1In the context of this work, a keypoint refers to specific points that can be detected in a pointer meter in order
to calculate the angle of the pointer to find the reading value (i.e., start of the scale, the marks on the scale, dial
position, center of the meter, edge positions, etc.)
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detection (Ueda et al., 2020; Zhou et al., 2022), however the point of the dial was never directly
detected with these models, they first detect the bounding box for the entire arm of the pointer,
then calculate the point of the dial.

We will focus solely on keypoint detection on residential multi-dial meters, as it was
an approach not explored in the previous works we found on the subject (Salomon et al., 2020;
Salomon et al., 2022). We will also expand upon the UFPR-ADMR dataset so that keypoint
detection is possible in a subset of that dataset. As the goal of this work was only to study the
detection of the keypoints, following steps to calculate the final reading, such as perspective
correction and angle calculation, were not performed, leaving them to a future work.

In this work we will show that it is viable to apply YOLOv7, a state-of-the-art object
detection model, to directly detect all the keypoints necessary to calculate the angle of the dial of
a multi-dial meter while highlighting the differences between the approaches and the types of
meter. The two main contributions of this work are: (a) we show that using an object detection
model for keypoint detection on multi-dial meters in a single stage is a viable strategy, and (b) we
expand upon the UFPR-ADMR dataset by adding extra annotations to 500 images (more than
2200 individual digits), labeling them with the coordinates for the point of the dial, center of the
dial, and start of the scale for each digit.

The remainder of this work will be organized as follows. In Section 2 we review related
works and their methods. Section 3 describes our proposed approach. The results and the dataset
used are shown and analyzed in Section 4. Finally, the conclusions are stated in Section 5
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2 RELATED WORK

Automatic meter reading has two main categories of meters being studied in the literature: digit
meters (Fig. 2.1) and pointer meters (Fig. 2.2).

Digit meters include meters with digital electronic displays (Fig. 2.1(a)) and meters
with analog rolling digit displays (Fig. 2.1(b)). AMR methods for digital and analog displays
largely include the same general steps, and in practice, many methods that work for analog meters
will also work for digital meters. This is also reflected in the datasets created for these meters, as
they often include both types (Azeem et al., 2020; Shuo et al., 2019; Bishwokarma et al., 2020;
Waqar et al., 2019; Calefati et al., 2019; Dzeha et al., 2021). Most approaches include some form
of these steps: detection of the counter region (Region of Interest - RoI), digit segmentation, and
digit recognition. Various methods can be applied to achieve these steps, from traditional image
processing algorithms to deep learning techniques.

(a) meters with electronic display (b) meters with analog rolling digit display

Figure 2.1: Samples of digit meters from the UFPR-AMR dataset

Pointer meters use rotating pointers in a circular scale to measure their readings (Fig.
2.2). A widely used method being currently applied for AMR of pointer meters is finding the
angle of the pointer. This is achieved by mainly 2 methods: keypoint detection and pointer
extraction. Keypoint detection methods detect the keypoints of the meter, to then calculate the
reading using these keypoints (usually calculating the angle between the dial and start of the
scale) (Fang et al., 2019; Ueda et al., 2020; Zhou et al., 2022; Howells et al., 2021). Pointer
extraction methods extract the region of the image which contains the dial (through traditional
image processing techniques, or deep learning techniques) to find the angle of the dial (Zhou
et al., 2021; He et al., 2019; Zuo et al., 2020; Peng et al., 2021). However all the AMR methods
for pointer meters found in the literature, with the exception of Salomon et al. (2020) and its
related works, were designed for gauges (Fig. 2.2(a)). Although in Salomon et al. (2020) an
approach for multi-dial meters (Fig. 2.2(b)) is presented, it differs from other works, as the angle
of the dial is not calculated, the reading value is generated based on the dial position detected in
a previous step.
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(a) diagram of a common gauge (b) multi-dial meter from UFPR-ADMR

Figure 2.2: The two types of pointer meters, gauges and multi-dial meters.

2.1 DIGIT METERS

In this section we will present AMR methods designed for digit meters that use deep learning
techniques. It’s in this category of meters that most works dealing with residential (water,
electricity/energy, gas) meters are present.

Son et al. (2019) presented an AMR method for analog gas meters. Their method
consists of a 3-stage process in which deep learning techniques are used in the first and last stage.
The first stage, region detection, is achieved using YOLOv3, the second stage, digit segmentation,
uses traditional image processing methods, and the last stage, digit recognition, uses a CNN
with a modified VGG network structure. The dataset used was a private, self-gathered dataset,
composed of 5000 annotated images. Their method achieved a recognition rate of 85.71%
accuracy for the meter value readings, 60.90% accuracy for the ID readings, and 57.14% accuracy
for value + ID readings.

Azeem et al. (2020) presented an AMR method for analog and digital electricity meters.
Their method consists of 3 stages, using deep learning in all of them. Counter detection, digit
segmentation, and digit recognition are all achieved using a Mask-RCNN approach. The dataset
used was the public UFPR-AMR dataset. Against 3 other methods compared, their method
achieved better F-Measure for the counter detection, and higher accuracy for digit recognition.

Shuo et al. (2019) presented an AMR method for digital electricity meters. Their method
consists mainly of 3 parts: Meter type identification and digital area location, image enhancement,
and digital segmentation and recognition. Meter type identification and digital area location
are achieved using MobileNetv2-SSD, image enhancement uses traditional image processing
techniques, and digital segmentation and recognition are achieved using a SVM classifier. The
dataset used was a privately selected dataset, composed of 2300 images. Their method achieved
an overall accuracy of 88.67% on LCD and analog meters.
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Košcevic and Subašic (2018) presented an AMR method for analog and digital residential
meters. The method has 2 main parts, the first part consists of the detection of the counter and
serial number regions, and the second part performs the digit reading. The first part has 2 steps
of image processing then the counter and serial number detection is performed using a modified
Faster R-CNN. The second part also uses a modified Faster R-CNN for digit reading. The dataset
used was a private self-gathered dataset, composed of 775 images. Their method successfully
read 97.01% of counter regions and 63.51% of serial number regions, with an average time of
0.36 seconds per image.

Bishwokarma et al. (2020) proposed an AMR system for analog and digital electricity
meters using smartphones. The system uses a mobile device to send images to a server for
processing. On the server, the task of counter detection and digit recognition are performed by
a deep neural network (YOLOv3). The dataset used was a small private self-gathered dataset,
composed of 410 images. For each class of digit recognized, the accuracy of the network varied
between 50% and 97.5%.

Peng and Chen (2020) presented an AMR method for analog water meters. The method
uses an end-to-end approach using deep learning. The network used is a R-FCN model. The
dataset used was a private self-gathered dataset, composed of 160785 images (of which 15000
are training images). The method achieved a recognition accuracy of 81.70% and the recognition
rate is 52.93%.

Waqar et al. (2019) presented an AMR method for analog and digital electricity meters.
The method uses deep learning for extraction and recognition of digits. The model used is the
Faster R-CNN. The dataset used was private, obtained from electricity companies, and was
composed of 10310 images. The model achieved 76.05% accuracy in the test images.

Calefati et al. (2019) proposed an AMR method for analog and digital meters. Their
approach has 2 phases, a detection phase, and a recognition phase. Each phase uses a different
CNN to achieve its goal. The dataset used was obtained from private utility companies (the
authors will publish a version which does not contain customer information). The end-to-end
accuracy of the method was 85.60%.

Li et al. (2019) proposed an AMR system for analog water meters using cameras and
cloud technology. The system uses an installed camera in the meter to capture images and send
them to a cloud server for processing. The server uses a CNN for digit recognition. The dataset
used was a private self-gathered dataset consisting of 6000 images. The proposed network
successfully reduced computational load, storage and running time.

Dzeha et al. (2021) presented an AMR system for analog and digital electricity meters
using mobile phones. The smartphone captures an image and sends it to a server for processing.
The feature extraction and character recognition are performed on the server using a CNN. The
dataset used was the MNIST dataset. The accuracy claimed was 99.09%, and time to extract
information was approximately 1.52 seconds.



15

Zhu et al. (2022) proposed an AMR method for analog water meters. Their approach
focuses on a new method for data augmentation and a new module to connect with the CNN
used in digit recognition. The network used in recognition is the YOLOv4-tiny model. The
dataset used was their own collected dataset available publicly at Github (at the time of writing
the page was not available) consisting of 1277 images. The data augmentation method showed
improvements when compared to the baseline, and the new module presented improvements on
the baseline network and also when compared against other modules.

Cerman et al. (2016) proposed an AMR method for residential meters. Their method
has 2 stages, a digit detection, and a digit recognition phase. Digit detection uses traditional
image processing methods, and for their second stage, they compare 2 approaches, one using
Tesseract OCR, and the other using a CNN. The dataset used was a company’s internal collection,
consisting of a total of almost 50 thousand frames of electricity, gas and water meters. The digit
detection achieved an average accuracy of 81.42% for the 3 types of meter, and the CNN achieved
an average accuracy of 97.34% (compared to the Tesseract OCR with 85.76%).

Chouiten and Schaeffer (2014) presented an AMR method for analog gas meters using
mobile phones. Their method uses machine learning for the detection of the region of interest.
The last stage, optical character reading, is achieved using GOCR (an open source Optical
Character Recognition model). The dataset used was private, provided by a utility company. The
method achieved an average of 89% accuracy across various models of mobile devices.

2.2 POINTER METERS

In this section we will present AMR methods for pointer meters that use deep learning techniques.
In this section, with the exception of Salomon et al. (2020), all works deal with industrial gauges.

Fang et al. (2019) presented an AMR method for pointer meters. The method has 3
steps: keypoint detection, scale circle fitting, and finally value calculation. The first step, keypoint
detection is achieved using an improved Mask R-CNN (ResNet-18), then the following steps use
the detected keypoints for the calculations. The dataset used for training and testing was a private
self-gathered dataset, consisting of 1160 images. Their method was compared to traditional
methods (Hough transform), showing better accuracy in their data, however the run time was
slower than the traditional method.

Zhou et al. (2021) presented an AMR method for industrial pointer meters at gas
gathering stations. The method first detects the location of the meter and extracts the pointer
region using deep learning techniques then various steps of image processing are done and finally
the value is calculated. The first step, meter location detection is performed using a YOLO
network. The dataset used was a private self-gathered dataset, composed of 1500 images. There
was no data in regards to accuracy or time achieved by their method.

Ueda et al. (2020) proposed an AMR system for pointer meters using smartphones.
The system uses a mobile device to capture and send frames to a server for processing. On the
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server, various steps are performed for calculating the reading value, and the steps that use deep
learning techniques are the meter detection and pointer region extraction steps, with each step
using a different Single Shot Multibox Detector (SSD) network. The dataset used was a private
self-gathered dataset, and consists of 12600 training images. Their method that achieved best
accuracy was using multiple frames, with homography transform, achieving an error of less than
0.015 with a frequency of 0.9352.

He et al. (2019) proposed an AMR method for pointer meters. The method first uses
deep learning to segment the meter dial and extract the pointer area, then calculates the reading.
The framework used for the segmentation is the Mask-RCNN, and the value is calculated using
the angle method. The dataset used was a private self-gathered dataset composed of 1430 RGB
images. Their method had time costs of 2.8724 seconds on CPU and 0.0931 seconds on GPU,
and was shown to achieve better performance in instance segmentation and average reference
error when compared to other methods.

Zuo et al. (2020)1 presented an AMR method for pointer meters. The approach consists
of 4 stages: feature extraction, classifier, perspective transformation, and reading calculation. The
first stage uses a Mask-RCNN (with the RoiAlign replaced by the PrRolPooling method). The
dataset used was a private dataset composed of 1430 RGB images. The improved Mask-RCNN
has achieved better performance than the original and the average running time per picture is
0.0931 seconds by the GPU while 2.8724 seconds in the CPU.

Peng et al. (2021) presented an AMR method for pointer meters. The method first
detects the dial position and meter class, then extracts the pointer to calculate the readings. The
dial position is detected with a YOLOv4 network, and the feature extraction is achieved with
a modified U-Net network. The dataset used was a selection of 1806 images from substations.
The method proposed presents a lower error detection rate and missed detection rate than other
ML methods on meter detection, and also presents improvements on reading recognition when
compared to the control groups.

Zhou et al. (2022) proposed an AMR method for pointer meters. The method has 2
main stages: a detection stage, and a recognition stage. The detection stage uses a CNN (based
on the YOLOv5 framework) to find the meter positioning and achieve feature detection, then the
recognition stage uses the features detected to calculate the readings. The dataset used was a
self-gathered dataset consisting of 6725 images. The YOLOv5 framework used for meter position
performed better than the other frameworks it was compared to, with a significant increase in
frames per second detected.

Howells et al. (2021) presented an AMR method for pointer meters using mobile phones.
The method has 3 stages: (1) gauge detection, (2) perspective correction, and (3) gauge reading.
CNNs are used in stage 1, for location detection and homography inferention, and in stage 3, for
detection of the keypoints used in the angle calculation. The dataset used is a combination of

1Zuo et al. (2020) and He et al. (2019) have the same authors, albeit in a different order. Both papers appear to
present the same work.
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self-gathered real data and synthetic 3D data. Their method achieved 25 fps on an iPhone 11 and
performed better when compared against the baselines and the comparison, achieving a mean of
98.6% of accuracy on gauge detection and correctly detecting all keypoints.

Salomon et al. (2020) presented an AMR baseline for residential pointer meters with
multiple dials. Their method has 4 main steps: image acquisition, dial detection, dial recognition,
and final reading. The detection, recognition and reading stages are based on deep learning, and
the detection models evaluated for their approach were models based on YOLO (Fast-YOLOv3,
YOLOv3) and Faster R-CNN (ResNet-50, ResNet-101, ResNeXt-101). A new dataset was created
and made public, the UFPR-ADMR dataset (shared upon request). The best results were achieved
by the ResNeXt-101 with a recognition rate of 93.60% per dial and 75.25% per meter.

Salomon et al. (2022) expanded upon their approach in their following work. They
introduce a novel regression approach for object detection, then a fine tuned ResNet and Xception
models are explored for feature extraction, then finally a custom FCN is used to predict the final
readings. They also expanded their dataset. Their best results achieved a 92.5% recognition rate
per meter, and 98.11% per dial.

2.2.1 Feature Extraction and Keypoint Detection for the Angle Method

The methods that use the angle method shown in this section can be further divided into feature
extraction and keypoint detection methods for calculating the angle between the pointer and the
starting point of the scale.

Feature extraction methods (Zhou et al., 2021; He et al., 2019; Zuo et al., 2020; Peng
et al., 2021) use a specialized network or traditional image processing methods to extract the
region of the image that represents the dial, then use techniques such as straight line fitting
to find the appropriate angle. In particular, the Machine Learning techniques used here are
algorithms based on classification, such as Regional Convolutional Neural Networks (most often
Mask-RCNN models).

Keypoint detection methods (Fang et al., 2019; Ueda et al., 2020; Zhou et al., 2022;
Howells et al., 2021) use deep learning to detect the points in the meter relevant to calculate the
angle, such as: center, edge of the dial, minimum and maximum of the scale. The ML models
found here are often algorithms based on regression, such as the YOLO family and Single Shot
Multibox Detectors, or specially trained CNNs for this task.

2.3 SUMMARY

In this section we present tables summarizing the AMR methods found in the literature that use
deep learning techniques. Dataset denotes if the work used a publicly available dataset. Time
and hardware denote if the work presented times achieved and hardware used.
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(a) Pointer extraction from Peng et al. (2021)
(b) Keypoint detection from Howells et al.
(2021) using specially trained CNNs

Figure 2.3: The two types of approaches for the angle method.

Tab. 2.1 summarizes the works that designed an AMR method for digit meters. For
meter types, "A" denotes meters with an analog rolling digit display, and "D" denotes digital
electronic displays.

Tab. 2.2 summarizes the works that designed an AMR method for pointer meters.

Table 2.1: Digit Meters

Year Work Dataset Data type Meter type DL stages Model used Time Hardware Notes
2019 Son et al. (2019) Gas A S1, S3 YOLO, VGG X
2020 Azeem et al. (2020) X Energy A/D all Mask-RCNN X
2019 Shuo et al. (2019) Energy A/D S1 MobileNetv2-SSD X
2018 Košcevic and Subašic (2018) G/E A/D S3,S5 Faster R-CNN X X
2020 Bishwokarma et al. (2020) Energy A/D all YOLOv3 X Mobile
2020 Peng and Chen (2020) Water A all R-FCN X
2019 Waqar et al. (2019) Energy A/D all Faster RCNN
2019 Calefati et al. (2019) Utilities A/D all CNN X X
2019 Li et al. (2019) Water A all CNN
2021 Dzeha et al. (2021) X Energy A/D all CNN X Mobile
2022 Zhu et al. (2022) X* Water A all YOLOv4-tiny X
2016 Cerman et al. (2016) Energy A S2 CNN X X
2014 Chouiten and Schaeffer (2014) Gas A S1 CNN X Mobile

* The dataset was not available at the time of writing

Table 2.2: Pointer meters

Year Work Dataset Data type Meter type DL stages Model used Time Hardware Notes
2019 Fang et al. (2019) Industrial Gauge S1 Mask-RCNN* X
2021 Zhou et al. (2021) Industrial Gauge S1 YOLO X
2020 Ueda et al. (2020) Industrial Gauge S1,S3 SSD Mobile
2019 He et al. (2019) Industrial Gauge S1 Mask-RCNN X X
2020 Zuo et al. (2020) Industrial Gauge S1 Mask-RCNN X X
2021 Peng et al. (2021) Industrial Gauge S1,S2 YOLOv4/U-Net X X
2022 Zhou et al. (2022) Industrial Gauge S1,S2 YOLOv5 X X
2021 Howells et al. (2021) X Industrial Gauge S1, S3 MobileNetv2(PyTo) X X Mobile
2020 Salomon et al. (2020) X Energy Multi-dial all ResNeXt-101 X X Residential

2.4 CONCLUDING REMARKS

Most of the AMR methods for residential meters (water, electricity, gas) involve digit meters
(Azeem et al., 2020; Shuo et al., 2019; Košcevic and Subašic, 2018; Bishwokarma et al., 2020;



19

Waqar et al., 2019; Calefati et al., 2019; Dzeha et al., 2021; Zhu et al., 2022; Cerman et al.,
2016; Chouiten and Schaeffer, 2014), while methods for pointer meters involve mostly gauges in
industrial settings (Fig. 2.4(b)) (Fang et al., 2019; Zhou et al., 2021; Ueda et al., 2020; He et al.,
2019; Zuo et al., 2020; Peng et al., 2021; Zhou et al., 2022; Howells et al., 2021). There are also
methods that focus on mobile application solutions (Ueda et al., 2020; Bishwokarma et al., 2020;
Dzeha et al., 2021; Howells et al., 2021; Chouiten and Schaeffer, 2014). This work will focus
on the less studied multi-dial residential pointer meters (Fig. 2.4(a)), that we found only in the
UFPR-ADMR dataset (Salomon et al., 2020).

Sossa (2013) was another previous work that tackled AMR for multi-dial meters, however
they were not included in the review above since deep learning techniques were not used. The
authors used only traditional image processing techniques (Scale-invariant feature transform for
RoI and image binarization finding the pointer). Since it uses image binarization, it is closer to
the feature extraction approaches found in the previous section.

The baseline presented by Salomon et al. (2020) on their dataset does not use feature
extraction or keypoint detection, it uses a CNN to directly classify the result upon detecting
the dials. As such, the aim of this work is studying the feasibility of detecting keypoints with
deep learning (Fang et al., 2019; Ueda et al., 2020; Zhou et al., 2022; Howells et al., 2021)
on residential multi-dial meters, and its possible challenges when compared to its detection on
gauges.

There may be difficulties present in detecting keypoints of multi-dial meters as the
meters will often present multiple keypoints belonging to different scales in close proximity to
one another. There are also other significant topology differences between the 2 types of pointer
meters, such as the start and end of the scales forming a full circle in multi-dial meters, with
each dial representing one digit (0-9) of the value (Fig. 2.4(a)), as opposed to gauges that have a
distinct start and end (Fig. 2.4(b), 2.2(a)). When detecting keypoints to calculate the reading, the
value can be calculated using the angle between the dial and the start of the scale (Zhou et al.,
2021; Ueda et al., 2020; He et al., 2019; Zuo et al., 2020; Peng et al., 2021; Zhou et al., 2022;
Howells et al., 2021), therefore, the accuracy of such a method is dependent on how accurate the
keypoint detection is.

Another characteristic to note is that multi-dial meters do not have a standard number of
dials (Fig. 2.2(b), 2.4(a)). Furthermore, different scales in a meter have alternating directions
(clockwise, counter-clockwise) and may also share numbers, as seen in Fig. 2.4(a).
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(a) multi-dial meter from UFPR-ADMR (b) image of an industrial gauge from Ueda
et al. (2020)

Figure 2.4: Two examples of real pointer meters.
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3 PROPOSED APPROACH AND MOTIVATION

The proposed approach aims to explore the possibility of applying keypoint detection, popular in
AMR methods for industrial gauges, for residential multi-dial meters, a subject largely unstudied,
seen before only on Salomon et al. (2020) and its related works as far as we are aware. Our
approach uses YOLOv7 (Wang et al., 2022), an object detection model to detect each digit, and
all keypoints of each digit (center of the dial, edge of the pointer, and zero on the scale) in a
single stage. Fig. 3.1 shows a result of the detection for our approach.

Figure 3.1: Detection of all digits and keypoints using YOLOv7.

3.1 YOLOV7 OBJECT DETECTOR

The YOLO (You Only Look Once) is an algorithm proposed for object detection (Redmon et al.,
2015). It works by dividing the input image into regions and predicting bounding boxes and
probabilities of an object being present for each region. The YOLO family showed frequent
utilization in the AMR field, and at the time of experimenting, YOLOv2 was the oldest and
YOLOv5 was the most recent found in the literature.

YOLOv7 is a single stage real-time object detection model based on a Fully Connected
Neural Network architecture. It was released in July 2022 and according to the authors it was the
fastest and most accurate object detector at the time (Wang et al., 2022). Other than architectural
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changes when compared to previous YOLO models (mainly the usage of the E-ELAN network),
the model’s weights were trained on the COCO dataset (Lin et al., 2014). It showed better results
than all previous YOLO models.

When calculating the angle of the dial, the two approaches found in the literature are
detecting the keypoints and extracting the region of the image which contains the dial. Since
using object detectors to detect keypoints was an approach implemented before (Ueda et al., 2020;
Zhou et al., 2022), and the dataset used as base (Salomon et al., 2020) already had annotations
with bounding boxes for the digits fitting for use with a YOLO model, the approach chosen was
that of keypoint detection with YOLOv7 (based on the PyTorch framework). It was chosen for
this approach because it was the best and most recent object detector at the time of experimenting.

3.2 DIGIT AND KEYPOINT DETECTION

The model is trained to detect all digits and all the keypoints in the input image in a single stage.
The keypoints the model is trained to detect are: the center of the dial, the point of the dial, and
the starting position of the scale (Fig. 3.3). Since YOLO detects a bounding box, the values that
should be used in a future step to calculate the angle of the dial are the center coordinates of the
bounding boxes. Fig. 3.2 shows the flowchart of our single stage approach.

Figure 3.2: Flowchart of the single stage approach.

The keypoints detected for each digit are shown in Figure 3.3. From these keypoints the
value of the digit can be calculated in a future step by measuring the angle between the dial and
start from the center. For this dataset the network does not need to detect whether a digit is in a
clockwise or counter-clockwise orientation because this information can be inferred from the
total number of digits (the least significant digit is always in a clockwise configuration, and each
digit alternates orientation).

Figure 3.3: Keypoints of one digit.
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Since the YOLOv7 labeling format requires a bounding box for each object, the
coordinates of the keypoint were used as the center of the bounding box, and the size of the
box was based on the size of the annotated bounding box for the corresponding digit, with each
keypoint using a different proportion. The proportions were adjusted empirically, increasing
from a starting value of 0.05 of the digit’s bounding box until satisfactory results were achieved
in the detection of each keypoint. The final proportions were 0.125 for the center, 0.25 for the
dial, and a sixth for the start. The results of a detection can be seen in Fig. 3.1

The bounding box of the dial is the main difference between our approach and the two
others that used object detectors to find keypoints (Ueda et al., 2020; Zhou et al., 2022). In
their work they did not directly detect the dial keypoint, they detected the entire dial arm and
calculated the position based on that.

This approach also differs from other methods found in 2.2.1 as it does not detect the
RoI first, as Salomon et al. (2020) found that for this dataset they achieved better results without
it. Another difference is that most methods for industrial gauges are highly dependant on the
types of meters found in their datasets or manually pre-determined values, as different types of
meters might not use the same scale (having varying minimum and maximum values between
models) while residential multi-dial meters, regardless of number of digits, will always have only
a starting point at the value zero.

As the goal was only to study the feasibility of keypoint detection on this dataset,
the model does not calculate the reading value of the meters, as problems such as perspective
correction and parallax (the dial and the scale are not in the same plane) are not significantly
different than on gauges. Given our method is a single stage object detector, it can be easily
implemented into a new end-to-end approach, or an existing one. Fig. 3.4 shows a hypothetical
approach including our method.

Figure 3.4: Flowchart of a possible end-to-end approach including our method.

An advantage this approach may present when compared to other keypoint detection
methods and Salomon et al. (2020) is that small inaccuracies in the dial position might not affect
the final result, as each digit is an integer. And for cases where the angle is found to be close to
a mark on the scale, the previous digit can be used as context to decide if the digit should be
slightly above or below the mark by checking if the previous digit is below or above the value 5,
in the worst case (all middle digits are found to be close to the "5" mark, which shouldn’t be
possible in a calibrated meter) being dependant on the accuracy of the least significant digit.
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4 RESULTS AND DISCUSSION

The performance of the trained model was evaluated based on the number of digits and keypoints
it correctly detected on the 100 test images. The model used was the one based on the PyTorch
framework, and was trained for 250 epochs with 200 training images and 200 validation images
using multiple GPUs (Quadro RTX 8000, NVIDIA GeForce RTX 2080 SUPER and NVIDIA
TITAN Xp). The pre-trained weights chosen were the medium sized weights trained on the
COCO Dataset (Lin et al., 2014), available by default on the YOLOv7 model (Wang et al., 2022),
as they strike a balance between size and precision when compared to their tiny and large versions.
The initial learning rate was 0.01 and the final learning rate was 0.1. The IoU training threshold
was 0.2. The average time of each training epoch was 18 seconds.

4.1 DATASET

The dataset used as a base was the UFPR-ADMR (Salomon et al., 2020) which is the only public
dataset containing residential multi-dial meters we found. It includes 2000 images and is already
annotated with digit locations, so for this work 500 images were annotated to include the 3 extra
classes necessary for the keypoints to be detected. Each Image has one meter, and each meter has
either 4 or 5 digits, with each digit having 3 keypoints, giving a total of 2273 digits (54.6% of the
meters in our dataset are 5-digit meters) and 6819 keypoints for our dataset.

The UFPR-ADMR dataset consists of images with 640x480px resolution, and has the
following annotations: the value of the readings, the coordinates (in pixels) of the four corners of
the irregular quadrilateral containing the digits, and for each digit: the coordinates (in pixels) of
the upper left corner, the lenght and height (in pixels) of the box containing the digit. The 500
images used for this work were further annotated with the coordinates (in pixels) of the center,
dial and start for each digit, as seen in Fig. 3.3.

For the training of the method shown in this work, only the bounding box of the digit and
the keypoints were used. The dataset is public, available upon request (Salomon et al., 2020) and
our annotations are available at: https://github.com/FabianoAizawa/Keypoints-for-UFPR-ADMR
Fig. 4.1 shows an annotated image from our dataset.

4.1.1 Division of the Dataset

The 500 images in our dataset were divided into 200 training images, 200 validation images
and 100 testing images. The training images contain 914 digits (57% 5-digit meters) and the
validation images contain 915 digits (57.5% 5-digit meters). In the 400 images used in training,
there are a total of 1829 digits and 7316 keypoints.

https://github.com/FabianoAizawa/Keypoints-for-UFPR-ADMR
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Figure 4.1: Example of an annotated image.

There are 100 images in the testing set, containing in total 444 digits (with 3 keypoints
for each digit, there are 1332 keypoints in this set). The test images have on average 17.76 objects
to be detected (16 objects for meters with 4 digits, and 20 for meters with 5).

4.2 DATA AUGMENTATION

YOLOv7 allows configuration of its parameters (such as learning rates, IoU thresholds, weight
decay, etc.) along with data augmentation via its hyper-parameters. Initial experimentation
found that the model was having difficulties detecting dials which the color was too similar
to the background of the meter (mostly gray metallic dials, Fig. 4.2). To counteract this
problem, the hyper-parameter of HSV hue augmentation was increased to 0.5 (saturation and
value augmentation were already at sufficient values). All other parameters were not changed.

Figure 4.2: Examples of detection before data augmentation was adjusted.
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4.3 OVERALL RESULTS

The model achieved an average of 99.15% of digits and keypoints detected, with an average
detection time of 13ms for each image. The overall results for each object can be seen in Table
4.1.

Object Detection Rate (%) Detected Total
All 99.15% 1761 1776

Digit 100% 444 444
Center 100% 444 444
Dial 98.64% 438 444
Start 97.97% 435 444

Table 4.1: Overall Results of our model.

Our model correctly detected all digits and center keypoints, and achieved greater than
98% rate at detecting dials and 97% rate at start keypoints. Figure 4.3 shows results from
detections with our model.

Figure 4.3: Examples of detection on different meter models.

On a per image accuracy, we achieved 90% detection rate, meaning in 90 of the 100 test
images, we correctly detected all digits and all keypoints without detecting any false positive.
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4.4 DIGIT DETECTION

Our model correctly detected all 444 digits, even on the meter models where digits overlap with
the neighboring digits (Fig. 4.4). The digits overlap on these models because the annotations for
the bounding boxes of the digits also overlap in the UFPR-ADMR dataset, as they include the
surrounding scale numbers as part of the digit. The overlapping digits did not directly impact in
the detection of the other keypoints, however, the compact configuration of this type of meter
leads to a problem, as we will see in Section 4.7.1.

Figure 4.4: Two examples of meters with overlapping digits. The 3 keypoints for each digit are not being shown in
the images, but in these two images they were all detected.

The average confidence of the digits is very high, greater than 0.95, so any false-positives
can be discarded due to a low confidence value. The incorrect digit bounding box with the
highest confidence detected in our test set had 0.68 confidence (Shown in Fig. 4.5), while the
lowest confidence value for a digit was a single outlier at 0.74 (the second lowest was at 0.88
confidence).

Figure 4.5: The test image which had the highest confidence value for an incorrect digit bounding box (0.68
confidence). The 3 keypoints not shown for each actual digit were correctly detected.
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Most incorrect bounding boxes found for the digits were found in images of meters with
overlapping digits were the most or least significant digit were partially outside the image, so our
model was predicting with a lower confidence that the edge of another digit was in that part of
the image (Fig. 4.5).

A confidence value of 0.7 or higher is already enough to discard all false positives in the
digit detection, however it’s also possible to discard digits via their lack of keypoints or via their
coordinates and dimensions.

4.5 FALSE POSITIVES

Given how reliably we can detect the digits in each image, incorrect bounding boxes in the
detection of keypoints are only considered to be false positives in the case of an incorrect
bounding box having a confidence value higher or equal than the lowest confidence value of
the corresponding keypoint class. This is because with the number of digits we can pick the
corresponding number of keypoints starting with the highest confidence value and discard the
rest.

As an example, in Fig. 4.6 the network correctly detected 4 digits, 4 centers, and 4
starts. However, with a confidence threshold of 0.3 in the detection, it detected 5 dials, the 4
correct dials, and one more with a confidence of 0.32 at the shadow of the least significant dial.
Since the digits were all correctly detected, we know there are 4 dials in the image, discarding
the incorrect dial with the lowest confidence.

Figure 4.6: An image from the testing set were one dial was incorrectly detected.

With this definition, on the training dataset 5 images detected false positives, 3 on the
detection of the dial keypoint and 2 on the detection of the start keypoint. Figure 4.7 shows the 3
images were false positives were detected on the dial keypoints. In these images we see that the
false positives were caused by uneven illumination, shadows and reflections on an image with
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poor quality, respectively. We can also see on the second image that the confidence value of
the least significant dial is much lower than the other dials because of uneven lighting and the
shadow of the dial. Additionally the most significant dial of the second image was not detected
because of a reflection.

Figure 4.7: Figure showing all the false positives detected on the dial keypoint detection. In the second image the
most significant dial was not detected. All other digits and keypoints not shown were correctly detected for these
images.

The false positives detected on the start keypoints will be discussed in depth in Section
4.8.

4.6 CENTER KEYPOINT

All 444 center keypoints were detected with no false positives. Figures 3.1 and 4.3 show detection
results including the detection of the center keypoints.

4.7 DIAL KEYPOINT

Detection of the dials achieved a detection rate of 98.64%, detecting 438 of the 444 dials in the
testing set. There were 3 false positives detected (Fig. 4.7) and 5 other images were one dial was
not detected.
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4.7.1 Error Analysis

The detection of the dial proved to be the most challenging aspect for our approach, a total of 8
images presented either a false positive (Fig. 4.7), or failed to detect all dials.

The false positives detected are shown in Fig. 4.7 and represent common challenges
in image recognition in real scenarios, such as contrast (first image), reflections and shadows
(second image), and blurriness and glare (third image). It was here that most incorrect bounding
boxes were detected, in particular on the shadows of the dials. Other than the images shown
in Fig. 4.7 all other incorrect boxes had low confidence scores and were not treated as false
positives as the confidence values were below the actual dial with the lowest confidence scores,
however it is still worth noting that shadows presented difficulties for our model.

On Figure 4.8 we see an interesting problem that is not possible on gauges. Due to the
close proximity of two dial keypoints, a single bounding box was predicted for both keypoints.
What likely happened is that both dials generated bounding boxes in the divided regions of
the image, however due to the proximity of the keypoints and size of object, the Non-Max
Suppression algorithm combined both keypoints into a single object. This problem occurred on
the meter type that overlaps digits, as their compact configuration means the keypoints can be
closer together. This only happened in the 2 images of Figure 4.8, were the dials were in very
close proximity and aligned. In other images were the dial keypoints were close, such as the 2
most significant digits of the first image of Fig. 4.8, Fig. 4.5, and the top right image of Fig. 4.3
the dial keypoints were detected correctly.

Figure 4.8: Figure showcasing the bounding box merging problem. For both images, digit, center and start keypoints
not shown were all correctly detected.

Figure 4.9 shows the final 3 images were dial keypoints were not detected. They
showcase classic issues in object detection, such as contrast, blur and glare problems in the image.

Possible improvements to the errors found here are expansion of the dataset and further
adjustment of the data augmentation and other parameters.
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Figure 4.9: Figure showcasing classic image recognition problems. For all images, digit, center and start keypoints
not shown were all correctly detected.

4.8 START KEYPOINT

Detection of the start keypoints achieved a detection rate of 97.97%, detecting 435 of the 444
starts in the testing set. The 9 keypoints not detected were in the same two images were the start
false positives were found.

4.8.1 Start Keypoint Obstructed by the Dial

We found that the start being obstructed by the dial does not compromise the keypoint detection,
as all digits in the testing set that had such characteristic had both the start and dial keypoint
detected correctly. Fig. 4.10 shows a few examples of this.

Figure 4.10: Examples of digits where the dial is obstructing the start.

4.8.2 Error Analysis

The two images were the errors occurred are shown in Fig. 4.11, where we can see that all the
starting keypoints (red bounding boxes) were detected on the wrong mark because the meter had
a severe rotation.

Minor rotation is not a problem, as seen on Fig. 4.12, the wrong mark is only detected
when the rotation is enough so that the highest mark in the digit belongs to another number.
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Figure 4.11: Figure showing the two images from the testing set that had a high degree of rotation. Other than the
start keypoints, all digits and other keypoints were detected correctly.

This highlights that in our dataset there are few images with high rotation, meaning our
model is trained to detect the highest mark on a digit instead of detecting the mark next to the
value zero. A possible approach to dealing with this problem is presented in the next section.

Figure 4.12: Examples of correct detections on slightly inclined meters.

4.8.3 Rectifying Major Rotations

A possible solution to the rotation problem is rectifying rotation in the image is by pre-processing
the image before the detection stage. To demonstrate this, we manually rotated one of the images
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were the starting points were incorrectly detected and tried detecting the keypoints on the rectified
image. The results of the detection can be seen on Fig. 4.13.

Figure 4.13: Correct detection of all keypoints on the rectified image.

4.9 PROOF OF CONCEPT

As a proof of concept, we manually adjusted one of the images that had severe rotation as the
pre-processing stage, then detected the keypoints on the adjusted image (our approach) and finally
calculated the reading of the meter via the angle method. This is shown in Fig. 4.14. Such an
approach would be similar to the possible approach ilustrated in Fig. 3.4.

Figure 4.14: The angles found for each digit are: 64º, 291º, 15º and 129º.

The pre-processing of the image can be done in various ways, with the model trained
here the correction of the angle can be done with the coordinates of the most and least significant
digit, as they are always aligned horizontally. However for the rotation correction to be done this
way, the detection of the digits must be done in a separate stage.

4.10 CONCLUDING REMARKS

The approach is promising for AMR of multi-dial meters, however it still needs to be applied in
an end-to-end approach in order to test and further improve its accuracy on the final readings.
Another point of improvement is the expansion of the dataset and cross-dataset experimentation,
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as there is a need to verify whether the particular errors found on the dial keypoint detection are
a challenge specific to these types of meters, as with a small dataset we identified possible new
challenges in the merging of bounding boxes and the possibility of shadows posing a particular
challenge for multi-dial meters given the proportions of the meter features when compared to
gauges.

An open question not answered by our work is the viability of the other approach for the
calculation of the angle method, feature extraction, and how it compares with keypoint detection.
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5 CONCLUSION

Image-based AMR is a viable solution for the laborious task of reading outdated industrial and
residential utility meters. In this work we did a review of the AMR literature, presenting its main
motivations, challenges and summarizing the methods and techniques used in the field. With
that we identified an area where few research was done, AMR methods for residential multi-dial
meters.

The only previous work we found in the area was Salomon et al. (2020) and their related
dataset, UFPR-ADMR. We expanded upon this dataset annotating 500 images with extra labels
necessary to perform keypoint detection. With this new labels we applied a method used in
gauges, keypoint detection, while highlighting the differences between the 2 types of meter and
pointing the possible challenges unique to multi-dial meters.

While object detectors, such as YOLO and SSD, are usually used in the literature for
RoI detection, they have been used before for keypoint detection in gauges. We implemented this
approach for multi-dial meters. Considering the relatively small dataset size, using YOLOv7 to
detect keypoints in our approach showed promising results, achieving an overall detection rate of
99.15%, showing that keypoint detection for multi-dial meters is a viable strategy.

There are still improvements to be made such as developing an end-to-end approach
using our method and expanding the dataset so we can evaluate and improve its accuracy more
appropriately.
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